
Full-Body Gesture Recognition for Embodied Conversational Agents:
The UTEP AGENT Gesture Tool

Ivan Gris, Adriana Camacho, David Novick

Department of Computer Science, The University of Texas at El Paso, El Paso, TX USA
{igris, accamacho2}@miners.utep.edu, novick@utep.edu

Abstract
Recognition of body gestures has long challenged developers
of interfaces for real-time interaction between humans and
embodied conversational agents (ECAs). In this paper we
present a computationally simple approach to full-body
gesture recognition along with an example of a human-agent
application that makes use of it. We discuss how developers
can use the tool to create pose libraries and how it works
across different applications. And we evaluate gesture
recognition implemented with the tool in the context of the
human-agent application.
Index Terms: full-body gesture recognition, embodied
conversational agents

1. Introduction
Full-body gesture recognition provides natural human-
computer interaction in applications such as embodied
conversational agents (ECAs). However, this approach to
interaction remains difficult to achieve due to low recognition
accuracy, distant sensor positioning, performance issues in
real-time processing, intrusive interactive tracking technology,
and the expense of capturing motion for representation of
gestures.

For developers of ECAs, agent gestures can be animated
or represented for purposes of recognition via hand-drawing or
motion capture. For example, one agent with hand-drawn
animation is a virtual nurse for hospital patients with low
health literacy [1]. But hand-drawn animation is time-
consuming and represents an artistic rather than naturalistic
approach to gesture generation. And for recognition of
gestures by human conversants, hand-drawn animation is
highly problematic, in large part because each animation
represents a particular movement path rather than a robust
representation that accounts for variability in human motion.

Other ECAs use gestures generated via motion capture.
[e.g., 2, 3]. This approach provides gestures that are more
plausibly realistic, although it is certainly possible to capture
and produce gestures that are idiosyncratic and unconvincing.
Yet the motion-capture approach also can be time-consuming.
For example, developing the relatively simple gestures for the
ECA in the “Escape from the Castle of the Vampire King”
game [4] took many weeks. And capturing gestures for
purposes of recognition, which involves recording and
processing the multiple examples of gestures needed for
robust recognition, can require great effort.

To speed radically the process of capturing human
gestures for purposes of generating ECAs’ gestures and of
recognizing the gestures of the ECAs’ human conversational
partners, we developed a tool that is capable of recognizing
full-body gestures in real time and that can generate pose
libraries for recognition across applications. In this paper, we
review methods of gesture recognition that target different
parts of the body, discussing the advantages and disadvantages
of these methods. We present our gesture tool, explain how it

works, and briefly describe the mathematical principles of
full-body gesture recognition on which the tool is based,
discuss the tool’s potential applications. We discuss how we
use the tool to aid with gesture annotation in real time and
how the tool connects with our ECA system to enable real-
time responses to gestures. We conclude with a discussion of
the tool’s limitations and how future updates will address
these.

2. Background
To increase the believability and naturalness of human-agent
interactions, developers seek to build agents capable of
representing and interpreting traits that humans seem to do
effortlessly. This includes the recognition of speech and
gesture.

There are many commercial and research solutions to
gesture recognition. Some target the face and focus on
detecting emotions through facial features [5] or skin color
[6], and others focus on gaze patterns. These systems, though,
target specific body parts and usually require people to sit in
front of a camera or sensor and maintain a relatively static
position. With sensors like the Kinect, a device that is able to
track user’s body position and movements, users and
developers alike have greater flexibility in terms of distance
and gesture types. These sensors can be used at a short range
to perform head [7], gaze [8] or hand tracking [9], while at
greater distances they can cover the full body. This often
involves a tradeoff, where detection at a short distance cannot
be performed with a full-body setup, and vice-versa, leaving it
to the developer’s priorities to choose between full-body
tracking versus head, gaze or hand tracking.

Although applications are often controlled through a
computer screen and a traditional keyboard and mouse setup,
some ECAs, such as those developed in our lab [e.g., 4] are
life-sized projections of virtual human characters whose
interaction instead aims for a more naturalistic approach using
speech commands. The goal of these agents is to perform
conversational tasks, often involving user-agent collaboration.
To maintain the naturalness of the conversation, agents often
need to react to the user’s physical behavior, such as facial
expression, gaze, and gesture, just like humans would. The
more detailed the information about the user’s non-verbal
actions are, the better the agent can interpret and more
accurately react to them [10, 11]. This enables a better
interactive storytelling application, a domain of choice for
full-body gesture recognition, as users can interact with
objects contained in the same virtual space as the agent [12,
13].

These systems provide real-time full-body tracking in 3D,
often including information about the hands and the face
concurrently. However these systems can be costly and
intrusive, meaning they often require users to wear special
suits or markers to be detected by a set of several cameras
positioned across an empty room. This sort of elaborate setup
and its associated costs are not the only barriers to interaction

GESPIN 4 131

and gesture recognition. Even though they work with much
greater accuracy, this information is usually processed and
applied to 3D characters, meaning that the tracking
information is translated directly into a virtual character to
make the character replicate the actor’s movements as closely
as possible [14]. This means that there is no further analysis of
the gesture-capture data, which makes impractical the
identification of gestures and reactions in real-time to these
gestures. And if a system does not identify full-body gestures
automatically, this means that analysis of gestures will require,
manual annotation of videos (e.g. [15]). Even though video
annotation is nonintrusive and can be encoded on an abstract
level, this is still a burdensome and time-consuming process.

To address these problems, we built a tool using
Microsoft’s Kinect sensor that suits specifically the full-body
gesture recognition scenario while standing at a distance of six
to eight feet away from the sensor. This tool is capable of
generating poses for libraries that can be used for recognition
through applications. Using this pose library, this tool
identifies users’ full body gestures in real time which enable
the capability of analyzing the gestures performed by the user.

A similar system was recently developed that included
similar functionality, although its current applications are
game-oriented and is not actively maintained [16]. This
system provided a full-body gesture recognition solution for
existing applications, but this addressed only part of the
challenge. When translating existing controls to gesture
recognition, subjects are often required to perform the same
gesture repetitively, and although the gestures can be
metaphors of real-life gestures, they might not be ergonomic.

Accordingly, we designed our tool for detecting large sets
of unique gestures and for users to create, export and import

these gesture sets. Another key difference is that our tool can
be used not only to interact with different applications but also
to generate log files as spreadsheets that present the users’
behavior across time, presumably facilitating researchers to
analyze this data rather than the painful long process of
annotating gestures manually.

Our approach sought to lower significantly the
computational cost of gesture recognition. As discussed in
Section 3, to make real-time recognition computationally
feasible, our approach converts the 3D rendering to a 2D
representation. An alternative approach involved using only
depth information [17]. Again, to simplify recognition to
reduce computation, our approach used a finite-state model for
gesture recognition (see [18] for a review of alternative
approaches generally, and see [19 and 20] for reviews of
alternative approaches using the Kinect), although our
approach is even simpler than the FSM model of [21] because
it relies on pose sequences without timing information.

We connected our tool to a markup language and
interpreter [22], a middleware system that enables external
applications to access pose libraries and gesture detection. In
addition, we created a user interface (see Figure 2) that
enables developers to build pose libraries based on screenshots
of the desired poses and that has additional features aimed at
improving accuracy through basic statistical analyses. Figure 1
shows a human performing a “hi-five” gesture that is
recognized and interpreted by an ECA.

3. Tool implementation
In this section we delve deeper into the implementation,
features, and use cases of the UTEP AGENT gesture tool. The

Figure 1. Human, interacting with ECA, performing a "hi-five" gesture. The human’s gesture is sensed by a Kinect just in front of the
projection wall and is interpreted via the gesture tool.

132 Nantes, 2-4 September 2015

tool is built as a standalone Windows application that can be
connected to Unity3D, a game engine that renders and
animates our ECAs and the virtual environment in which these
appear.

Based on depth information captured by the infrared
camera from the Kinect, the tool renders a skeleton consisting
of lines connecting 20 major joints of the human body (see
Figure 2f). These skeleton is a 2D rendering in stick-figure
style of the person recognized, as shown in Figure 2d, which
shows a person performing a hi-five gesture like that shown in
Figure 1. Although the Kinect is able to recognize human
figures and track their joints in real time, it cannot differentiate
between poses. In fact, the sensor produces only a visual
representation of lines connecting the joints and updates them
according to their position in 3D Cartesian coordinates.
Microsoft’s Kinect SDK [23] enabled pose detection.

The configuration of the subject’s body joints, their
position and posture, defines a pose. However, creating a pose
recognizer from coordinates presents several problems during
translation, rotation, and scaling of the skeletons. First,
coordinates of the tracked joints change depending on the base
position. That is, doing a pose while standing to the left of the
screen will render different coordinates than doing the same
pose on the right edge of the sensor’s tracking field. This
could be solved by using an offset parameter that checks for
the same pose across different locations, but this approach can
become computationally expensive, depending on the size of
the pose library. A solution to this would be to calculate the
offset based on an anchor point, in this case the hip joint, that
controls translation, but this approach would remain
ineffective for rotation and scale.

Scale is an issue, not because people come in all shapes
and sizes but because they move. People do not grow and
shrink in a few seconds, but they do change their distance

from the sensor, which looks like a growing and shrinking
effect to the sensor. In other words, when people translate
along the z-axis, they appear larger or smaller on screen. This,
combined with the x-axis translation, can make the process
computationally expensive and unmanageable in real time.

To resolve these issues, first we eliminated the depth
information. Because the rendering occurs in 2D regardless of
the 3D information contained in the coordinates, and because
in our research settings users are always located directly in
front of the sensor at a relatively constant distance of eight to
nine feet, the 3D information does little to help the gesture
tool accuracy but does slow our system considerably.

Second, once the coordinates are transformed to 2D, each
joint is triangulated using the parent joint (in this case the hip
center) as base and creating a right triangle. We then use this
triangulation to switch from location information to angles
between joints to avoid normalizing position information in
real time and to improve the accuracy of our measures and
enable a more intuitive margin of error. Because positions are
relative to the standing position of the person interacting with
the tool, different coordinates could mean the same gesture,
making it hard to classify or differentiate gestures that occur at
a different standing position. By using angles, we can instead
guarantee that they will remain constant regardless of the
user’s starting position. However a limitation still remains in
our tool because it does not completely remove the ambiguity
of angles. To address this ambiguity, pose capture and
recognition have to be done in the same room with the same
angle position of the Kinect performing the recognition.

The third step is to recognize a pose. However to do this
there must already be information about the pose to be
recognized. To address this, we created a pose library that
contains an array of pose objects; Figure 3 presents sample
code. These objects contain a subset of joint pairs and the

Figure 2. UTEP AGENT gesture tool interface tracking a "hi-five" pose. (a) specify the name (e.g., high five) and type (e.g.,
right/left) of a pose; (b) selection of specific body parts for capture; (c) capture controls; (d) 2D rendering stick figure of a person
with every dot representing each joint; (e) debugging tools showing the recognized pose (if any), record of your activity and turning
section “f” (joint angles) on/off; (f) list of all 20 major joints recognized by the Kinect with its angle value.

GESPIN 4 133

angles between them. For example, to recognize a “hi-five”
pose we would be interested in the angles that form between
the shoulder, the elbow, the wrist, and the hand joints. This is
still not enough, however, because we need to mirror the
values to enable gestures to be executed symmetrically for
both left and right side of the subject’s body.

Initially, this process required manually taking screenshots
from the rendering of the angles of a person on screen
performing the desired pose for integration into the library.
These angles were then passed to Excel sheets and processed
manually to calculate the average and a proper margin of error
to populate the pose library. To automate this process, we
created the gesture capture tool as a separate module. The
capture tool enables the developer to select the relevant body
parts for the pose capture, as shown in Figure 2b. Then it
enables the capture of those joint angles, using the controls in
Figure 2c. The process requires the developer to click a
capture button while the pose actor is representing the pose in
front of the sensor. In addition, the tool enables developers to
capture several times the same pose from the same or different
pose actors to improve accuracy. As different people do the
same gestures differently, or the same person might slightly
change posture between one attempt and another, the capture
tool collects the data, analyzes it by calculating the maximum,
minimum, and average angles, and estimates a range parting
from the mean of the angles required to recognize these
gestures in the majority of cases. This is effectively
calculating a margin of error, depending on the variety of
poses that were captured.

There is a tradeoff between multiple captures and few or
single captures. The more captures of the same pose (or
gesture) that are taken, the more accurate the recognizer
becomes. But the increased precision may prevent users from
being recognized properly due to the reduced margin of error.
In contrast, smaller sets of training data might lead to over-
coverage and large margins of error due to frequent outliers.
To examine the results and identify these outliers we generate
two files. One file contains the values of all captures for each
joint angle, making it easier for us to find these outliers and, if
necessary, to recalculate the margin of error. The second file is
in xml format and contains tags for every joint identifier, its
average angle, and its margin of error calculated by getting the
smaller value of either the difference of the maximum and the
average, or the minimum and the average.

When the gesture capture tool has defined the angles and
their respective margin of error, the pose is then added to the
pose recognition library and can now be named and detected.

The resulting string of the detected pose can then be used to
trigger events in other applications or simply collect the data
of common gestures (e.g., hands on hips, arms crossed, hand
on face). Once the poses are stored in the library, we can build
gestures from them. Because gestures require movement, we
define a gesture as a sequence of poses. Once a pose of the
collection of poses that constitute a gesture is detected, the
system then expects to detect a second pose (or some number
of poses) that will integrate a gesture and only then be
detected as such. In other words, when the user follows the
pose sequence, the tool detects the gesture.

4. Evaluation
Currently, we are using the UTEP AGENT pose tool for
several studies, including analysis of the amplitude or
extraversion of gestures and poses. We also use the tool as
part of an immersive jungle-survival application in which we
evaluate the level of rapport between humans and virtual
agents as a function of their non-verbal behaviors. These
behaviors are recognized to enable physical interaction with
the ECA and its virtual world.

For the jungle game application we defined two types of
gestures in the pose library to be detected: task gestures and
background gestures. Task gestures were performed where
users had to accomplish a certain task (e.g., lift hand, strike,
throw spear) to advance through the story. The background
gestures were performed by the user but were not necessary to
advance through the story (e.g., crossed arms, normal stance,
hands in front, hand on shoulder, hand on face). At the same
time, we automatically capture and annotate, in a log file, the
background gestures so that we can avoid manually annotating
hours of paralinguistic behaviors.

The annotation includes gestures from both the human and
the ECA, because we know when the agent will change poses
from the animations that are specified in scripted interaction.
For the human, the gesture tool detects when the subject does
a certain gesture and adds a corresponding time-stamped
annotation. This results in a graph like the one in Figure 4,
which shows the changes in gestures of both the agent and the
user across time.

Each interaction session of the jungle game where these
gestures were recorded lasted for about 40-60 minutes; we
expected the user to perform eight task gestures to advance in
the scripted story. Users were not instructed as to how to
perform the gestures, which resulted in a longer period of
people trying to figure out how to perform the gesture
resulting in some variance of gesture performance. For

Figure 4. User-agent gesture timeline. The numbers on the y-
axis are labels of different gestures.

Figure 3. Pose library sample code

134 Nantes, 2-4 September 2015

example, they were asked to “strike a magnesium bar to light a
fire.” This gesture might not be as intuitive and does not have
a standard way to be performed, which resulted low
recognition rates for this gesture.

To evaluate the success/failure rate for recognition of the
task gestures, we annotated the performance of these task
gestures in the interaction of 30 users in the jungle game. The
accuracy percentage was calculated with those task gestures
that were performed correctly and recognized without a
problem over the false negatives (when users performed the
correct gesture and the gesture tool had a hard time
recognizing them) and the false positives (when users did not
perform the correct gesture and the gesture tool recognized
them anyway) plus those gestures that were correctly
recognized. For most task gestures, recognition accuracy
ranged from about 50 to 80 percent; recognition was much
lower for the unintuitive “strike 2” task. Table 1 reports these
results. The recognition rates reflect multiple tries by the
users; usually the users were able to achieve gesture
recognition eventually.

Table 1. Accuracy percentage of recognition of task
gestures

Gesture
Accuracy

percentage

lift hand 70.73%

strike 1 51.02%

throw spear 1 49.02%

throw spear 2 65.79%

throw spear 3 70.27%

ventilate 77.78%

lift hand 65.85%

strike 2 25.00%

5. Discussion
Before the tool, generating a pose library took days or weeks
of manually screening participants, getting their joint angle
information, filtering the joints to remove the non-necessary
joints for each poses, and collecting and aggregating the data
from the different participants. With the tool, the process has
been largely automated, and we now only need to have
participants line up, stand in front of the sensor, and get
scanned once per person per pose. For example, we used the
tool to generate in less than an hour a library containing over
20 poses by scanning 12 members of our research group
several times, with each person enacting a pose at a time.
Participants did not receive any additional instructions apart
from where to stand and what pose they had to enact. Each
pose took about 15 seconds, and the 240 total poses from the
12 subjects took an hour to collect.

The tool, however, has several major limitations.
Principally, aspects of the tool designed to reduce
computational cost correspondingly eliminated consideration
of information about depth and speed, our pose definitions
average across all joints rather than focusing on the most
meaningful joints, and our recognizer relies on context
constraints to reduce confusion among gestures.

With respect to speed, the tool’s gesture recognition in its
current implementation is based on pose sequences that are
insensitive to time. This means that a gesture will be

recognized when the human follows a pose sequence
regardless of the speed with which it is executed. This is not
optimal, as gestures can vary in meaning depending on speed
of execution [24]. We plan to integrate timers that can be set
between poses to add greater precision to the gesture
recognition.

We note, too, that the sequence of poses to detect a gesture
can vary depending on users’ performance and the accuracy of
the Kinect in detecting a pose, making it difficult for a gesture
to be recognized even if the user has performed the correct
gesture.

In terms of joint angle accuracy, currently, our tool simply
averages over different pre-labeled gesture instances and gives
the developer the liberty to decide which body parts are
relevant for a specific pose, treating all joint angles of selected
body parts alike. Additional features, such as machine learning
algorithms, could have been integrated for further refinement
of the pose generation. A clustering approach, for example,
could increase accuracy of pose generation by focusing only
on relevant joint angles. In this case, a cluster of joint angles
would represent a predefined pose in the tool. However, this
approach would be limited by its inability to remove overlap
within poses, an issue that is handled appropriately in our
current implementation.

Another concern involves confusion among gestures.
When gestures are not well defined, their margin of error
might be higher than usual. If this happens across several
gestures, there might be subsets of coordinates that fall
between one or more gestures, making the recognizer unable
to decide which gesture was actually executed. To avoid this,
we activate and deactivate poses or gestures based on our
expectations, much in the same way that we create contexts
for speech recognition. By lowering the number of poses that
can be recognized at the same time we decrease the overlap
risk. This approach can be problem, however, when the user
does not know what poses to expect or when two poses that
overlap are expected. Moreover, our technique of reducing the
joint positions to a 2D plane significantly increases the risk of
confusion.

The tool has other limitations related to its
implementation. Indeed, one of the tool’s main advantages is
also a disadvantage: it can perform all the data gathering and
analysis in real time, but only in real time. This means that the
tool cannot analyze a video recording after it has been
captured. In contrast, motion-capture systems can store the 3D
data and can be used at a later time for tweaking and post-
processing to adjust for different physical traits among actors
and the characters they represent. For some studies, we have
been able to capture and store 3D information as rendered by
the depth sensors of two Kinects. However, the data sets
become large, making it infeasible to record several hours of
conversation for further analysis or automated annotation.
Moreover, the analysis cannot be executed in real time, and as
it provides 3D depth data rather than a 2D skeletal
representation, our tool cannot convert or interpret the data in
these formats.

Although the tool is limited in terms of dimensional space
and post-processing data handling, it has proven to be useful
and reliable for our current applications. Provided that there is
post-processing of the pose library to minimize overlap, the
tool performs well even though it is a lightweight application
in comparison to commercial motion-capture systems or other
recognizers that are unable to process information in real time.
As it is, with our ECA front-end applications, the tool can be
applied to real-time interaction, real-time video annotation,
and pose analysis.

GESPIN 4 135

In the future, we plan to implement the recognizer with 3D
coordinates on a more powerful computer, to include timing
information for gestures, and to update the recognizer and
capture tool to work with the Kinect ONE, which offers
greater accuracy and additional capabilities.

The UTEP AGENT gesture tool is available from the
authors.

6. Acknowledgments
For their contributions to the studies through which we
developed the gesture tool, we thank Diego A. Rivera, Mario
Guitierrez, Alex Rayon, Laura Rodriguez, Paola Gallardo,
Alfonso Peralta, Victoria Bravo, and Brynne Blaugrund.

7. References
[1] T. Bickmore et al., “Taking the time to care: empowering

low health literacy hospital patients with virtual nurse
agents,” in Proc. Conf. on Human Factors in Computing
Systems, Boston, MA, 2009, 1265-1274.

[2] M. Thiebaux et al., “Smartbody: Behavior realization for
embodied conversational agents,” in Proc. 7th Intl. Joint
Conf. Autonomous Agents and Multiagent Systems, vol.
1, Richland, SC, 2008, 151-158.

[3] C. Bregler et al., “Turning to the masters: Motion
capturing cartoons,” ACM Transactions on Graphics 21,
no. 3 (2002): 399-407.

[4] D. Novick and I. Gris, “Building rapport between human
and ECA: A pilot study.” In Proc. HCI Intl., Crete,
Greece, 2014, 472-480.

[5] C. Busso et al., “Analysis of emotion recognition using
facial expressions, speech and multimodal
information,” in Proc. 6th Int. Conf. Multimodal
Interfaces, State College, PA, 2004, 205-211.

[6] G.A. Ramirez et al., “Color Analysis of Facial Skin:
Detection of Emotional State,” in Computer Vision and
Pattern Recognition Workshops (CVPRW), 2014 IEEE
Conf. Computer Vision and Pattern Recognition,
Columbus, OH, 2014, 474-479.

[7] L.P. Morency et al., “Head gestures for perceptual
interfaces: The role of context in improving recognition,"
Artificial Intelligence 171, no. 8 (2007): 568-585.

[8] D. Bohus and E. Horvitz. “Facilitating multiparty dialog
with gaze, gesture, and speech,” in Int. Conf. Multimodal
Interfaces and the Workshop on Machine Learning for
Multimodal Interaction, 2010, doi:
10.1145/1891903.1891910.

[9] P. Trigueiros et al., “Hand Gesture Recognition System
Based in Computer Vision and Machine Learning,” in
Developments in Medical Image Processing and

Computational Vision, Springer International Publishing,
2015, 355-377.

[10] J. Gratch et al., “Virtual rapport,” in Intelligent virtual
agents, pp. 14-27. Springer Berlin Heidelberg, 2006.

[11] J. Bailenson and N. Yee, “Digital chameleons automatic
assimilation of nonverbal gestures in immersive virtual
environments.” Psychological Science 16, no. 10 (2005):
814-819.

[12] D. Thue et al., “Interactive storytelling: A player
modelling approach,” in Proc. Artificial Intelligence for
Interactive Digital Entertainment Conf., 2007, 43-48.

[13] U. Spierling et al., “Setting the scene: playing digital
director in interactive storytelling and creation.”
Computers & Graphics 26, no. 1 (2002): 31-44.

[14] E. Bevacqua, I. Stankovic, A. Maatallaoui, A. Nedelec
and P. De Loor, 'Effects of Coupling in Human-virtual
Agent Body Interaction', in Intelligent Virtual Agents,
Boston, MA, 2014, pp. 54-63.

[15] M. Kipp, M. Neff and I. Albrecht, 'An annotation scheme
for conversational gestures: how to economically capture
timing and form', Lang Resources & Evaluation, vol. 41,
no. 3-4, pp. 325-339, 2007.

[16] E.A. Suma et al., “Adapting user interfaces for gestural
interaction with the flexible action and articulated
skeleton toolkit.” Computers & Graphics 37, no. 3
(2013): 193-201.

[17] K.K. Biswas and S.K. Basu, “Gesture recognition using
Microsoft Kinect®” in 5th Intl Conf. on Automation,
Robotics and Applications (ICARA), 2011, 100-103.

[18] S. Mitra and A. Tinku, “Gesture recognition: A survey,”
in IEEE Tran. on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 37.3 (2007), 311-324.

[19] O. Patsadu et al., “Human gesture recognition using
Kinect camera," in 2012 Intl Joint Conf. on Computer
Science and Software Engineering (JCSSE), 2012, 28-32.

[20] J. Han et al., “Enhanced computer vision with Microsoft
Kinect sensor: A review," in IEEE Trans. on Cybernetics,
43.5 (2013): 1318-1334.

[21] P. Hong et al., “Gesture modeling and recognition using
finite state machines,” in Proc. 4th IEEE Int. Conf.
Autom. Face Gesture Recogn., Grenoble, France, Mar.
2000, 410–415.

[22] D. Novick et al., “A mark-up language and interpreter for
interactive scenes for embodied conversational agents,”
in Proc. HCI Intl. 2015, Los Angeles, CA, in press.

[23] J. Webb and J. Ashley, Beginning Kinect programming
with the Microsoft Kinect SDK. [New York]: Apress,
2012.

[24] M. Neff, N. Toothman, R. Bowmani, J. Fox Tree and M.
Walker, 'Don't Scratch! Self-adaptors Reflect Emotional
Stability', in Intelligent Virtual Agents, Reykjavik,
Iceland, 2015, pp. 398-411.

136 Nantes, 2-4 September 2015

