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Abstract 
Recognition of body gestures has long challenged developers 
of interfaces for real-time interaction between humans and 
embodied conversational agents (ECAs). In this paper we 
present a computationally simple approach to full-body 
gesture recognition along with an example of a human-agent 
application that makes use of it. We discuss how developers 
can use the tool to create pose libraries and how it works 
across different applications. And we evaluate gesture 
recognition implemented with the tool in the context of the 
human-agent application. 
Index Terms: full-body gesture recognition, embodied 
conversational agents 

1. Introduction 
Full-body gesture recognition provides natural human-
computer interaction in applications such as embodied 
conversational agents (ECAs). However, this approach to 
interaction remains difficult to achieve due to low recognition 
accuracy, distant sensor positioning, performance issues in 
real-time processing, intrusive interactive tracking technology, 
and the expense of capturing motion for representation of 
gestures. 

For developers of ECAs, agent gestures can be animated 
or represented for purposes of recognition via hand-drawing or 
motion capture. For example, one agent with hand-drawn 
animation is a virtual nurse for hospital patients with low 
health literacy [1]. But hand-drawn animation is time-
consuming and represents an artistic rather than naturalistic 
approach to gesture generation. And for recognition of 
gestures by human conversants, hand-drawn animation is 
highly problematic, in large part because each animation 
represents a particular movement path rather than a robust 
representation that accounts for variability in human motion. 

Other ECAs use gestures generated via motion capture. 
[e.g., 2, 3]. This approach provides gestures that are more 
plausibly realistic, although it is certainly possible to capture 
and produce gestures that are idiosyncratic and unconvincing. 
Yet the motion-capture approach also can be time-consuming. 
For example, developing the relatively simple gestures for the 
ECA in the “Escape from the Castle of the Vampire King” 
game [4] took many weeks. And capturing gestures for 
purposes of recognition, which involves recording and 
processing the multiple examples of gestures needed for 
robust recognition, can require great effort.  

To speed radically the process of capturing human 
gestures for purposes of generating ECAs’ gestures and of 
recognizing the gestures of the ECAs’ human conversational 
partners, we developed a tool that is capable of recognizing 
full-body gestures in real time and that can generate pose 
libraries for recognition across applications. In this paper, we 
review methods of gesture recognition that target different 
parts of the body, discussing the advantages and disadvantages 
of these methods. We present our gesture tool, explain how it 

works, and briefly describe the mathematical principles of 
full-body gesture recognition on which the tool is based, 
discuss the tool’s potential applications. We discuss how we 
use the tool to aid with gesture annotation in real time and 
how the tool connects with our ECA system to enable real-
time responses to gestures. We conclude with a discussion of 
the tool’s limitations and how future updates will address 
these. 

2. Background 
To increase the believability and naturalness of human-agent 
interactions, developers seek to build agents capable of 
representing and interpreting traits that humans seem to do 
effortlessly. This includes the recognition of speech and 
gesture. 

There are many commercial and research solutions to 
gesture recognition. Some target the face and focus on 
detecting emotions through facial features [5] or skin color 
[6], and others focus on gaze patterns. These systems, though, 
target specific body parts and usually require people to sit in 
front of a camera or sensor and maintain a relatively static 
position. With sensors like the Kinect, a device that is able to 
track user’s body position and movements, users and 
developers alike have greater flexibility in terms of distance 
and gesture types. These sensors can be used at a short range 
to perform head [7], gaze [8] or hand tracking [9], while at 
greater distances they can cover the full body. This often 
involves a tradeoff, where detection at a short distance cannot 
be performed with a full-body setup, and vice-versa, leaving it 
to the developer’s priorities to choose between full-body 
tracking versus head, gaze or hand tracking. 

Although applications are often controlled through a 
computer screen and a traditional keyboard and mouse setup, 
some ECAs, such as those developed in our lab [e.g., 4] are 
life-sized projections of virtual human characters whose 
interaction instead aims for a more naturalistic approach using 
speech commands. The goal of these agents is to perform 
conversational tasks, often involving user-agent collaboration. 
To maintain the naturalness of the conversation, agents often 
need to react to the user’s physical behavior, such as facial 
expression, gaze, and gesture, just like humans would. The 
more detailed the information about the user’s non-verbal 
actions are, the better the agent can interpret and more 
accurately react to them [10, 11]. This enables a better 
interactive storytelling application, a domain of choice for 
full-body gesture recognition, as users can interact with 
objects contained in the same virtual space as the agent [12, 
13]. 

These systems provide real-time full-body tracking in 3D, 
often including information about the hands and the face 
concurrently. However these systems can be costly and 
intrusive, meaning they often require users to wear special 
suits or markers to be detected by a set of several cameras 
positioned across an empty room. This sort of elaborate setup 
and its associated costs are not the only barriers to interaction 
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and gesture recognition. Even though they work with much 
greater accuracy, this information is usually processed and 
applied to 3D characters, meaning that the tracking 
information is translated directly into a virtual character to 
make the character replicate the actor’s movements as closely 
as possible [14]. This means that there is no further analysis of 
the gesture-capture data, which makes impractical the 
identification of gestures and reactions in real-time to these 
gestures. And if a system does not identify full-body gestures 
automatically, this means that analysis of gestures will require, 
manual annotation of videos (e.g. [15]). Even though video 
annotation is nonintrusive and can be encoded on an abstract 
level, this is still a burdensome and time-consuming process.  

To address these problems, we built a tool using 
Microsoft’s Kinect sensor that suits specifically the full-body 
gesture recognition scenario while standing at a distance of six 
to eight feet away from the sensor. This tool is capable of 
generating poses for libraries that can be used for recognition 
through applications. Using this pose library, this tool 
identifies users’ full body gestures in real time which enable 
the capability of analyzing the gestures performed by the user.   

A similar system was recently developed that included 
similar functionality, although its current applications are 
game-oriented and is not actively maintained [16]. This 
system provided a full-body gesture recognition solution for 
existing applications, but this addressed only part of the 
challenge. When translating existing controls to gesture 
recognition, subjects are often required to perform the same 
gesture repetitively, and although the gestures can be 
metaphors of real-life gestures, they might not be ergonomic.  

Accordingly, we designed our tool for detecting large sets 
of unique gestures and for users to create, export and import 

these gesture sets. Another key difference is that our tool can 
be used not only to interact with different applications but also 
to generate log files as spreadsheets that present the users’ 
behavior across time, presumably facilitating researchers to 
analyze this data rather than the painful long process of 
annotating gestures manually.  

Our approach sought to lower significantly the 
computational cost of gesture recognition. As discussed in 
Section 3, to make real-time recognition computationally 
feasible, our approach converts the 3D rendering to a 2D 
representation. An alternative approach involved using only 
depth information [17]. Again, to simplify recognition to 
reduce computation, our approach used a finite-state model for 
gesture recognition (see [18] for a review of alternative 
approaches generally, and see [19 and 20] for reviews of 
alternative approaches using the Kinect), although our 
approach is even simpler than the FSM model of [21] because 
it relies on pose sequences without timing information. 

We connected our tool to a markup language and 
interpreter [22], a middleware system that enables external 
applications to access pose libraries and gesture detection. In 
addition, we created a user interface (see Figure 2) that 
enables developers to build pose libraries based on screenshots 
of the desired poses and that has additional features aimed at 
improving accuracy through basic statistical analyses. Figure 1 
shows a human performing a “hi-five” gesture that is 
recognized and interpreted by an ECA.  

3. Tool implementation 
In this section we delve deeper into the implementation, 
features, and use cases of the UTEP AGENT gesture tool. The 

Figure 1. Human, interacting with ECA, performing a "hi-five" gesture. The human’s gesture is sensed by a Kinect just in front of the 
projection wall and is interpreted via the gesture tool. 
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tool is built as a standalone Windows application that can be 
connected to Unity3D, a game engine that renders and 
animates our ECAs and the virtual environment in which these 
appear. 

Based on depth information captured by the infrared 
camera from the Kinect, the tool renders a skeleton consisting 
of lines connecting 20 major joints of the human body (see 
Figure 2f). These skeleton is a 2D rendering in stick-figure 
style of the person recognized, as shown in Figure 2d, which 
shows a person performing a hi-five gesture like that shown in 
Figure 1. Although the Kinect is able to recognize human 
figures and track their joints in real time, it cannot differentiate 
between poses. In fact, the sensor produces only a visual 
representation of lines connecting the joints and updates them 
according to their position in 3D Cartesian coordinates. 
Microsoft’s Kinect SDK [23] enabled pose detection.  

The configuration of the subject’s body joints, their 
position and posture, defines a pose. However, creating a pose 
recognizer from coordinates presents several problems during 
translation, rotation, and scaling of the skeletons. First, 
coordinates of the tracked joints change depending on the base 
position. That is, doing a pose while standing to the left of the 
screen will render different coordinates than doing the same 
pose on the right edge of the sensor’s tracking field. This 
could be solved by using an offset parameter that checks for 
the same pose across different locations, but this approach can 
become computationally expensive, depending on the size of 
the pose library. A solution to this would be to calculate the 
offset based on an anchor point, in this case the hip joint, that 
controls translation, but this approach would remain 
ineffective for rotation and scale. 

Scale is an issue, not because people come in all shapes 
and sizes but because they move. People do not grow and 
shrink in a few seconds, but they do change their distance 

from the sensor, which looks like a growing and shrinking 
effect to the sensor. In other words, when people translate 
along the z-axis, they appear larger or smaller on screen. This, 
combined with the x-axis translation, can make the process 
computationally expensive and unmanageable in real time. 

To resolve these issues, first we eliminated the depth 
information. Because the rendering occurs in 2D regardless of 
the 3D information contained in the coordinates, and because 
in our research settings users are always located directly in 
front of the sensor at a relatively constant distance of eight to 
nine feet, the 3D information does little to help the gesture 
tool accuracy but does slow our system considerably. 

Second, once the coordinates are transformed to 2D, each 
joint is triangulated using the parent joint (in this case the hip 
center) as base and creating a right triangle. We then use this 
triangulation to switch from location information to angles 
between joints to avoid normalizing position information in 
real time and to improve the accuracy of our measures and 
enable a more intuitive margin of error. Because positions are 
relative to the standing position of the person interacting with 
the tool, different coordinates could mean the same gesture, 
making it hard to classify or differentiate gestures that occur at 
a different standing position. By using angles, we can instead 
guarantee that they will remain constant regardless of the 
user’s starting position. However a limitation still remains in 
our tool because it does not completely remove the ambiguity 
of angles. To address this ambiguity, pose capture and 
recognition have to be done in the same room with the same 
angle position of the Kinect performing the recognition.  

The third step is to recognize a pose. However to do this 
there must already be information about the pose to be 
recognized. To address this, we created a pose library that 
contains an array of pose objects; Figure 3 presents sample 
code. These objects contain a subset of joint pairs and the 

Figure 2. UTEP AGENT gesture tool interface tracking a "hi-five" pose. (a) specify the name (e.g., high five) and type (e.g., 
right/left) of a pose; (b) selection of specific body parts for capture; (c) capture controls; (d) 2D rendering stick figure of a person 
with every dot representing each joint; (e) debugging tools showing the recognized pose (if any), record of your activity and turning 
section “f” (joint angles) on/off; (f) list of all 20 major joints recognized by the Kinect with its angle value.  
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angles between them. For example, to recognize a “hi-five” 
pose we would be interested in the angles that form between 
the shoulder, the elbow, the wrist, and the hand joints. This is 
still not enough, however, because we need to mirror the 
values to enable gestures to be executed symmetrically for 
both left and right side of the subject’s body. 

Initially, this process required manually taking screenshots 
from the rendering of the angles of a person on screen 
performing the desired pose for integration into the library. 
These angles were then passed to Excel sheets and processed 
manually to calculate the average and a proper margin of error 
to populate the pose library. To automate this process, we 
created the gesture capture tool as a separate module. The 
capture tool enables the developer to select the relevant body 
parts for the pose capture, as shown in Figure 2b. Then it 
enables the capture of those joint angles, using the controls in 
Figure 2c. The process requires the developer to click a 
capture button while the pose actor is representing the pose in 
front of the sensor. In addition, the tool enables developers to 
capture several times the same pose from the same or different 
pose actors to improve accuracy. As different people do the 
same gestures differently, or the same person might slightly 
change posture between one attempt and another, the capture 
tool collects the data, analyzes it by calculating the maximum, 
minimum, and average angles, and estimates a range parting 
from the mean of the angles required to recognize these 
gestures in the majority of cases. This is effectively 
calculating a margin of error, depending on the variety of 
poses that were captured. 

There is a tradeoff between multiple captures and few or 
single captures. The more captures of the same pose (or 
gesture) that are taken, the more accurate the recognizer 
becomes. But the increased precision may prevent users from 
being recognized properly due to the reduced margin of error. 
In contrast, smaller sets of training data might lead to over-
coverage and large margins of error due to frequent outliers. 
To examine the results and identify these outliers we generate 
two files. One file contains the values of all captures for each 
joint angle, making it easier for us to find these outliers and, if 
necessary, to recalculate the margin of error. The second file is 
in xml format and contains tags for every joint identifier, its 
average angle, and its margin of error calculated by getting the 
smaller value of either the difference of the maximum and the 
average, or the minimum and the average. 

When the gesture capture tool has defined the angles and 
their respective margin of error, the pose is then added to the 
pose recognition library and can now be named and detected. 

The resulting string of the detected pose can then be used to 
trigger events in other applications or simply collect the data 
of common gestures (e.g., hands on hips, arms crossed, hand 
on face). Once the poses are stored in the library, we can build 
gestures from them. Because gestures require movement, we 
define a gesture as a sequence of poses. Once a pose of the 
collection of poses that constitute a gesture is detected, the 
system then expects to detect a second pose (or some number 
of poses) that will integrate a gesture and only then be 
detected as such. In other words, when the user follows the 
pose sequence, the tool detects the gesture. 

4. Evaluation 
Currently, we are using the UTEP AGENT pose tool for 
several studies, including analysis of the amplitude or 
extraversion of gestures and poses. We also use the tool as 
part of an immersive jungle-survival application in which we 
evaluate the level of rapport between humans and virtual 
agents as a function of their non-verbal behaviors. These 
behaviors are recognized to enable physical interaction with 
the ECA and its virtual world.  

For the jungle game application we defined two types of 
gestures in the pose library to be detected: task gestures and 
background gestures. Task gestures were performed where 
users had to accomplish a certain task (e.g., lift hand, strike, 
throw spear) to advance through the story. The background 
gestures were performed by the user but were not necessary to 
advance through the story (e.g., crossed arms, normal stance, 
hands in front, hand on shoulder, hand on face). At the same 
time, we automatically capture and annotate, in a log file, the 
background gestures so that we can avoid manually annotating 
hours of paralinguistic behaviors.  

The annotation includes gestures from both the human and 
the ECA, because we know when the agent will change poses 
from the animations that are specified in scripted interaction. 
For the human, the gesture tool detects when the subject does 
a certain gesture and adds a corresponding time-stamped 
annotation. This results in a graph like the one in Figure 4, 
which shows the changes in gestures of both the agent and the 
user across time.  

Each interaction session of the jungle game where these 
gestures were recorded lasted for about 40-60 minutes; we 
expected the user to perform eight task gestures to advance in 
the scripted story. Users were not instructed as to how to 
perform the gestures, which resulted in a longer period of 
people trying to figure out how to perform the gesture 
resulting in some variance of gesture performance. For 

Figure 4. User-agent gesture timeline. The numbers on the y-
axis are labels of different gestures. 

Figure 3. Pose library sample code 
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example, they were asked to “strike a magnesium bar to light a 
fire.” This gesture might not be as intuitive and does not have 
a standard way to be performed, which resulted low 
recognition rates for this gesture.  

To evaluate the success/failure rate for recognition of the 
task gestures, we annotated the performance of these task 
gestures in the interaction of 30 users in the jungle game. The 
accuracy percentage was calculated with those task gestures 
that were performed correctly and recognized without a 
problem over the false negatives (when users performed the 
correct gesture and the gesture tool had a hard time 
recognizing them) and the false positives (when users did not 
perform the correct gesture and the gesture tool recognized 
them anyway) plus those gestures that were correctly 
recognized. For most task gestures, recognition accuracy 
ranged from about 50 to 80 percent; recognition was much 
lower for the unintuitive “strike 2” task. Table 1 reports these 
results. The recognition rates reflect multiple tries by the 
users; usually the users were able to achieve gesture 
recognition eventually. 

Table 1. Accuracy percentage of recognition of task 
gestures  

Gesture 
Accuracy 

percentage 

lift hand 70.73% 

strike 1 51.02% 

throw spear 1 49.02% 

throw spear 2 65.79% 

throw spear 3 70.27% 

ventilate 77.78% 

lift hand 65.85% 

strike 2 25.00% 
 

5. Discussion 
Before the tool, generating a pose library took days or weeks 
of manually screening participants, getting their joint angle 
information, filtering the joints to remove the non-necessary 
joints for each poses, and collecting and aggregating the data 
from the different participants. With the tool, the process has 
been largely automated, and we now only need to have 
participants line up, stand in front of the sensor, and get 
scanned once per person per pose. For example, we used the 
tool to generate in less than an hour a library containing over 
20 poses by scanning 12 members of our research group 
several times, with each person enacting a pose at a time. 
Participants did not receive any additional instructions apart 
from where to stand and what pose they had to enact. Each 
pose took about 15 seconds, and the 240 total poses from the 
12 subjects took an hour to collect. 

The tool, however, has several major limitations. 
Principally, aspects of the tool designed to reduce 
computational cost correspondingly eliminated consideration 
of information about depth and speed, our pose definitions 
average across all joints rather than focusing on the most 
meaningful joints, and our recognizer relies on context 
constraints to reduce confusion among gestures. 

With respect to speed, the tool’s gesture recognition in its 
current implementation is based on pose sequences that are 
insensitive to time. This means that a gesture will be 

recognized when the human follows a pose sequence 
regardless of the speed with which it is executed. This is not 
optimal, as gestures can vary in meaning depending on speed 
of execution [24]. We plan to integrate timers that can be set 
between poses to add greater precision to the gesture 
recognition. 

We note, too, that the sequence of poses to detect a gesture 
can vary depending on users’ performance and the accuracy of 
the Kinect in detecting a pose, making it difficult for a gesture 
to be recognized even if the user has performed the correct 
gesture.  

In terms of joint angle accuracy, currently, our tool simply 
averages over different pre-labeled gesture instances and gives 
the developer the liberty to decide which body parts are 
relevant for a specific pose, treating all joint angles of selected 
body parts alike. Additional features, such as machine learning 
algorithms, could have been integrated for further refinement 
of the pose generation. A clustering approach, for example, 
could increase accuracy of pose generation by focusing only 
on relevant joint angles. In this case, a cluster of joint angles 
would represent a predefined pose in the tool. However, this 
approach would be limited by its inability to remove overlap 
within poses, an issue that is handled appropriately in our 
current implementation. 

Another concern involves confusion among gestures. 
When gestures are not well defined, their margin of error 
might be higher than usual. If this happens across several 
gestures, there might be subsets of coordinates that fall 
between one or more gestures, making the recognizer unable 
to decide which gesture was actually executed. To avoid this, 
we activate and deactivate poses or gestures based on our 
expectations, much in the same way that we create contexts 
for speech recognition. By lowering the number of poses that 
can be recognized at the same time we decrease the overlap 
risk. This approach can be problem, however, when the user 
does not know what poses to expect or when two poses that 
overlap are expected. Moreover, our technique of reducing the 
joint positions to a 2D plane significantly increases the risk of 
confusion. 

The tool has other limitations related to its 
implementation. Indeed, one of the tool’s main advantages is 
also a disadvantage: it can perform all the data gathering and 
analysis in real time, but only in real time. This means that the 
tool cannot analyze a video recording after it has been 
captured. In contrast, motion-capture systems can store the 3D 
data and can be used at a later time for tweaking and post-
processing to adjust for different physical traits among actors 
and the characters they represent. For some studies, we have 
been able to capture and store 3D information as rendered by 
the depth sensors of two Kinects. However, the data sets 
become large, making it infeasible to record several hours of 
conversation for further analysis or automated annotation. 
Moreover, the analysis cannot be executed in real time, and as 
it provides 3D depth data rather than a 2D skeletal 
representation, our tool cannot convert or interpret the data in 
these formats. 

Although the tool is limited in terms of dimensional space 
and post-processing data handling, it has proven to be useful 
and reliable for our current applications. Provided that there is 
post-processing of the pose library to minimize overlap, the 
tool performs well even though it is a lightweight application 
in comparison to commercial motion-capture systems or other 
recognizers that are unable to process information in real time. 
As it is, with our ECA front-end applications, the tool can be 
applied to real-time interaction, real-time video annotation, 
and pose analysis. 
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In the future, we plan to implement the recognizer with 3D 
coordinates on a more powerful computer, to include timing 
information for gestures, and to update the recognizer and 
capture tool to work with the Kinect ONE, which offers 
greater accuracy and additional capabilities. 

The UTEP AGENT gesture tool is available from the 
authors. 
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